109 research outputs found

    Middle and High School Science Teachers\u27 Attitudes toward Nanotechnology and Intention to Implement it in Science Classrooms

    Get PDF
    This study was designed to determine the relationship between attitudes toward nanotechnology and the intention of implementing it in science classrooms; to detect the relationship between attitudes and other influential factors (knowledge and self-confidence, professional development, professional context, personal research experience, and personal practice of bringing nanotechnology in science classrooms); to highlight the salient attitudes of science teachers toward nanotechnology and implementing its related content, materials, and activities in science classrooms; and to identify the salient factors that would facilitate the process of integrating nanotechnology in science classrooms.;Science Teachers\u27 Attitudes toward Nanotechnology (STAT-N) survey and semi-structured interview were both used to collect data. Correlation was conducted to explore the relationship between attitudes and intention, and between attitudes and the above mentioned factors. The grounded theory approach was applied to identify science teachers\u27 salient attitudes toward nanotechnology and implementing it in science classrooms, and to determine the facilitators that would help with the process of implementing nanotechnology in science classrooms. Regression analysis was also used to identify the facilitators that would help science teachers with integrating nanotechnology in science classrooms.;Statistical analyses revealed a statistically significant relationship between attitudes and intention, p \u3c .05; statistically significant relationships between attitudes and the other influential factors (knowledge and self-confidence, professional development, professional context, personal research experience, and personal practice of bringing nanotechnology in science classrooms), p \u3c .05; and that all of these factors but attitudes and research were statistically significant factors in predicting and teachers\u27 intention of implementing nanotechnology in science classrooms. Professional development (PD) factor was the best predictor (beta = .32) among other factors.;Qualitative results unfolded that attitudes toward nanotechnology and its implementation in science classrooms are influenced by personal perspectives and by inhibiting factors that are related to school and student type, curriculum determinants, time constraints, social influences, lack of resources, lack of PD, lack of knowledge and self-confidence. Facilitators were offered to address some of these limiting factors

    Cultural Responsiveness of the Next Generation Science Standards

    Get PDF
    Student enrollment statistics indicate an increase in linguistically and culturally diverse students in the United States. Along with the increase in the diversity of the preK–12 student population, one would also expect to see a parallel increase in equitable learning opportunities for all students. Equity and inquiry are the key principles of the Framework for K–12 Science Education (the Framework) as well as the Next Generation Science Standards (NGSS). Due to the growth of minority populations and the increase in the enrollment of minority students, there is an increasing need to address the underrepresentation of linguistically and culturally diverse students. In this article, we intend to bring to the forefront issues related to the education of a diverse student population, including students from different racial and ethnic groups as well as English language learners, in the Western cultural views in science classrooms. We also intend to shed light on the responsiveness of Western science education, the Framework, and the NGSS to linguistically and culturally diverse students. In addition, we introduce some of the challenges that face diverse students. Finally, we provide some recommendations to meet the needs of diverse students

    An extreme-scale implicit solver for complex PDEs: highly heterogeneous flow in earth's mantle

    Get PDF
    Mantle convection is the fundamental physical process within earth's interior responsible for the thermal and geological evolution of the planet, including plate tectonics. The mantle is modeled as a viscous, incompressible, non-Newtonian fluid. The wide range of spatial scales, extreme variability and anisotropy in material properties, and severely nonlinear rheology have made global mantle convection modeling with realistic parameters prohibitive. Here we present a new implicit solver that exhibits optimal algorithmic performance and is capable of extreme scaling for hard PDE problems, such as mantle convection. To maximize accuracy and minimize runtime, the solver incorporates a number of advances, including aggressive multi-octree adaptivity, mixed continuous-discontinuous discretization, arbitrarily-high-order accuracy, hybrid spectral/geometric/algebraic multigrid, and novel Schur-complement preconditioning. These features present enormous challenges for extreme scalability. We demonstrate that---contrary to conventional wisdom---algorithmically optimal implicit solvers can be designed that scale out to 1.5 million cores for severely nonlinear, ill-conditioned, heterogeneous, and anisotropic PDEs

    A Biobrick Library for Cloning Custom Eukaryotic Plasmids

    Get PDF
    Researchers often require customised variations of plasmids that are not commercially available. Here we demonstrate the applicability and versatility of standard synthetic biological parts (biobricks) to build custom plasmids. For this purpose we have built a collection of 52 parts that include multiple cloning sites (MCS) and common protein tags, protein reporters and selection markers, amongst others. Importantly, most of the parts are designed in a format to allow fusions that maintain the reading frame. We illustrate the collection by building several model contructs, including concatemers of protein binding-site motifs, and a variety of plasmids for eukaryotic stable cloning and chromosomal insertion. For example, in 3 biobrick iterations, we make a cerulean-reporter plasmid for cloning fluorescent protein fusions. Furthermore, we use the collection to implement a recombinase-mediated DNA insertion (RMDI), allowing chromosomal site-directed exchange of genes. By making one recipient stable cell line, many standardised cell lines can subsequently be generated, by fluorescent fusion-gene exchange. We propose that this biobrick collection may be distributed peer-to-peer as a stand-alone library, in addition to its distribution through the Registry of Standard Biological Parts (http://partsregistry.org/)

    Relaxin-like peptides in male reproduction: a human perspective

    Get PDF
    The relaxin family of peptide hormones and their cognate GPCRs are becoming physiologically well-characterized in the cardiovascular system and particularly in female reproductive processes. Much less is known about the physiology and pharmacology of these peptides in male reproduction, particularly as regards humans. H2-relaxin is involved in prostate function and growth, while insulin-like peptide 3 (INSL3) is a major product of the testicular Leydig cells and, in the adult, appears to modulate steroidogenesis and germ cell survival. In the fetus, INSL3 is a key hormone expressed shortly after sex determination and is responsible for the first transabdominal phase of testicular descent. Importantly, INSL3 is becoming a very useful constitutive biomarker reflecting both fetal and post-natal development. Nothing is known about roles for INSL4 in male reproduction and only very little about relaxin-3, which is mostly considered as a brain peptide, or INSL5. The former is expressed at very low levels in the testes, but has no known physiology there, whereas the INSL5 knockout mouse does exhibit a testicular phenotype with mild effects on spermatogenesis,probably due to a disruption of glucose homeostasis. INSL6 is a major product of male germ cells, although it is relatively unexplored with regard to its physiology or pharmacology, except that in mice disruption of the INSL6 gene leads to a disruption of spermatogenesis. Clinically, relaxin analogues may be useful in the control of prostate cancer, and both relaxin and INSL3 have been considered as sperm adjuvants for in vitro fertilization

    Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5

    Get PDF
    We present the global general circulation model IPSL-CM5 developed to study the long-term response of the climate system to natural and anthropogenic forcings as part of the 5th Phase of the Coupled Model Intercomparison Project (CMIP5). This model includes an interactive carbon cycle, a representation of tropospheric and stratospheric chemistry, and a comprehensive representation of aerosols. As it represents the principal dynamical, physical, and bio-geochemical processes relevant to the climate system, it may be referred to as an Earth System Model. However, the IPSL-CM5 model may be used in a multitude of configurations associated with different boundary conditions and with a range of complexities in terms of processes and interactions. This paper presents an overview of the different model components and explains how they were coupled and used to simulate historical climate changes over the past 150 years and different scenarios of future climate change. A single version of the IPSL-CM5 model (IPSL-CM5A-LR) was used to provide climate projections associated with different socio-economic scenarios, including the different Representative Concentration Pathways considered by CMIP5 and several scenarios from the Special Report on Emission Scenarios considered by CMIP3. Results suggest that the magnitude of global warming projections primarily depends on the socio-economic scenario considered, that there is potential for an aggressive mitigation policy to limit global warming to about two degrees, and that the behavior of some components of the climate system such as the Arctic sea ice and the Atlantic Meridional Overturning Circulation may change drastically by the end of the twenty-first century in the case of a no climate policy scenario. Although the magnitude of regional temperature and precipitation changes depends fairly linearly on the magnitude of the projected global warming (and thus on the scenario considered), the geographical pattern of these changes is strikingly similar for the different scenarios. The representation of atmospheric physical processes in the model is shown to strongly influence the simulated climate variability and both the magnitude and pattern of the projected climate changes
    • …
    corecore